Nonregular languages

Sipser 1.4 (pages 77-82)

Nonregular languages?

• We now know:
 – Regular languages may be specified either by
 • regular expressions
 • DFAs or NFAs
 • What if we can’t find a regular expression or finite state automaton for a language?
 • How do we show a language is not regular?
Limited memory

• Since finite state automata cannot back up when reading an input, they are allowed only a bounded amount of memory
• What about the language
 \(\{0^n 1^n \mid n \geq 0\} \)?

Hmm... how can we prove a language is not regular?

• What about
 – \(\{w \mid w \text{ has an equal number of } 0\text{s and } 1\text{s}\} \)
 – \(\{w \mid w \text{ has an equal number of occurrences of the substrings } 01 \text{ and } 10\} \)
Try a different perspective

- How can a regular language be infinite?
- Iff its regular expression must have a Kleene star
- Star operators correspond to cycles in the finite state automaton

Pigeonhole principle

- Let M be a finite state machine with N states recognizing an infinite language
- Let $x \in L(M)$ with $|x| = N$
- Then there exists a sequence of states $S_0, S_1, S_2, \ldots, S_N$
- So: $N+1$ pigeons into N holes...
 - Some hole must have at least 2 pigeons!
 - I.e., at least two of the states must be the same, so there must be a cycle
Machine loops

• Let q_k be the first repeated state; that is, $q_k = q_{k+p}$ for some p, $0 \leq k < k+p \leq N$.

• Where

 $x = a_1a_2...a_k...a_{k+p}...a_N = uvw$
 $u = a_1a_2...a_k$
 $v = a_{k+1}...a_{k+p}$
 $w = a_{k+p+1}...a_N$

• We conclude: $uv^i w \in L(M)$ for all $i \geq 0$.

The pumping lemma

• Theorem 1.70: If A is a regular language, then there is a number N where, if x is any string of length at least N, then $x = uvw$, such that

 1. For each $i \geq 0$, $uv^i w \in A$,
 2. $|v| > 0$, and
 3. $|uv| \leq N$.
So now...

- Is \(L = \{0^n1^n : n \geq 0\} \) regular?
- Prove it!
- If \(L \) is regular... we can apply the pumping lemma!

 ...there are strings \(u, v, \) and \(w \) such that

 \[uv^i w \in L \text{ for all } i \geq 0. \]

 – What does \(v \) look like?
 - Entirely 0s
 - Entirely 1s
 - Both 0s and 1s

Reuse!

- Is \(C = \{ w \mid w \text{ has an equal number of 0s and 1s} \} \) a regular language?
Picking the substring to pump

• Is $PAL = \{w \in \{0, 1\}^* : w \text{ is a palindrome}\}$ a regular language?