Regular expressions
\iffalse\rightleftharpoons\fi
Regular languages
Sipser 1.3 (pages 63–76)

Last time...
Regular expressions

• Definition 1.52:
 Say that R is a regular expression if R is
 1. a for some a in the alphabet Σ
 2. ε
 3. \emptyset
 4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions
 5. $(R_1 \cdot R_2)$, where R_1 and R_2 are regular expressions
 6. (R_1^*), where R_1 is a regular expression

Regular expressions and NFAs

• Theorem 1.54: A language is regular if and only if some regular expression describes it.
• Proof (\Leftarrow)
 1. If $a \in \Sigma$, then a is regular.
 2. ε is regular.
 3. \emptyset is regular.
 4. If R_1 and R_2 are regular, then $(R_1 \cup R_2)$ is regular.
 5. If R_1 and R_2 are regular, then $(R_1 \cdot R_2)$ is regular.
 6. If R_1 is a regular, then (R_1^*) is regular.
Going forward

• Theorem 1.54: A language is regular if and only if some regular expression describes it.

• (⇒)

Diagram:
- Regular expression
- 3-state DFA
- 2-state GNFA
- 3-state GNFA
- 4-state GNFA
- 5-state GNFA
Proof

DFA to GNFA...

- Step 1: Add a unique start state with an ε jump to the original one
- Step 2: Add a unique accept state with ε jumps from the previous accept states
- Step 3: Convert multiple labels to \cup
- Step 4: Add \emptyset jumps for any transition that's missing
Induction step: rip a state

A simple example