Regular expressions

Sipser 1.3 (pages 63-76)

Looks familiar…
Your turn now!

Formally

• Definition 1.52:
 Say that R is a regular expression if R is
 1. a for some a in the alphabet Σ
 2. ε
 3. \emptyset
 4. $(R_1 \cup R_2)$, where R_1 and R_2 are regular expressions
 5. $(R_1 \cdot R_2)$, where R_1 and R_2 are regular expressions
 6. (R_1^*), where R_1 is a regular expression
Examples

- $0^*10^* = \{w \mid \ \}$
- $= \{w \mid w \text{ is a string of odd length} \}$
- $(0 \cup \varepsilon)(1 \cup \varepsilon) =$
- $(01)^*\emptyset =$
- $(+ \cup - \cup \varepsilon)(D^* \cup D^*.D^* \cup D^*.D^*) =$
 where $D = \{0,1,2,3,4,5,6,7,8,9\}$

Identities

- Let R be a regular expression
 - $R^0\emptyset =$
 - $R^0 \varepsilon =$
 - $R \cup \emptyset =$
 - $R \cup \varepsilon =$
Regular expressions and NFAs

- Theorem 1.54: A language is regular if and only if some regular expression describes it.
- Proof (\iff)
 1. If $a \in \Sigma$, then a is regular.
 2. ε is regular.
 3. \emptyset is regular.
 4. If R_1 and R_2 are regular, then $(R_1 \cup R_2)$ is regular.
 5. If R_1 and R_2 are regular, then $(R_1 \circ R_2)$ is regular.
 6. If R_1 is a regular, then (R_1^*) is regular.

Proof in action

- Build an NFA to that recognizes the regular expression
 \[a(a \cup b)^*a \]