NP-completeness

Sipser 7.4 (pages 271 – 283)

The classes P and NP

\[P = \bigcup \text{TIME}(n^k) \]

\[\text{NP} = \bigcup \text{NTIME}(n^k) \]
A famous NP problem

• CNF satisfiability (CNFSAT):
 Given a boolean formula B in conjunctive normal form for (CNF), is there a truth assignment that satisfies B?

$$ (x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (x_1 \lor \overline{x_2}) $$

A graph theory NP problem

• CLIQUE:
 Given a graph $G = (V, E)$ and an integer k, does G contain C_k as a subgraph?
 – Is $<G,3> \in CLIQUE$?
A graph theory NP problem

• \text{CLIQUE}:
 Given a graph \(G = (V, E) \) and an integer \(k \), does \(G \) contain \(C_k \) as a subgraph?
 – Is \(<G,3> \in \text{CLIQUE} \)?

\[\text{Graph diagram} \]

A graph theory NP problem

• \text{CLIQUE}:
 Given a graph \(G = (V, E) \) and an integer \(k \), does \(G \) contain \(C_k \) as a subgraph?
 – Is \(<G,4> \in \text{CLIQUE} \)?

\[\text{Graph diagram} \]
A graph theory NP problem

- CLIQUE:
 Given a graph $G = (V, E)$ and an integer k, does G contain C_k as a subgraph?
 – Is $<G,4> \in \text{CLIQUE}$?

A graph theory NP problem

- CLIQUE:
 Given a graph $G = (V, E)$ and an integer k, does G contain C_k as a subgraph?
 – Is $<G,5> \in \text{CLIQUE}$?
CLIQUE ∈ NP

• **Verifier:**
 V = “On input \(<G,k,c>\):
 1. Test whether \(c\) is a set of \(k\) nodes of \(G\)
 2. Test whether \(G\) contains all edges connecting nodes in \(c\)
 3. If both pass, accept; otherwise, reject.”

• **NTM:**
 N = “On input \(<G,k>\):
 1. Nondeterministically select a subset \(c\) of \(k\) nodes of \(G\)
 2. Test whether \(G\) contains all edges connecting nodes in \(c\)
 3. If yes, accept; otherwise, reject.”

Which problem is harder?
Recall...

- Definition 5.17: A function $f: \Sigma^* \rightarrow \Sigma^*$ is a **computable function** if \exists some Turing machine M, on every input w, halts with just $f(w)$ on its tape.

Polynomial time computable functions

- Definition 7.28: A function $f: \Sigma^* \rightarrow \Sigma^*$ is a **polynomial time computable function** if \exists some polynomial time Turing machine M, on every input w, halts with just $f(w)$ on its tape.
Recall...

• Definition 5.20:

Language A is **mapping reducible** to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$

Polynomial time mapping reducibility

• Definition 7.29:

Language A is **polynomial time mapping reducible** to language B, written $A \leq_p B$, if there is a polynomial time computable function $f: \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$
Intuitively, A is no harder than B

- Theorem 7.31:
 If $A \leq_p B$ and $B \in P$, then $A \in P$.
- Proof:

 ![Diagram]

 - w is input
 - $f(w)$ is output
 - Reduction algorithm F
 - Algorithm for deciding A
 - Algorithm for deciding B

CNF \leq_p CLIQUE

- Given a boolean formula B in CNF, we show how to construct a graph G and an integer k such that G has a clique of size $k \iff B$ is satisfiable.
- Given $(x_1 \lor x_2) \land (\overline{x_1} \lor \overline{x_2}) \land (x_1 \lor \overline{x_2})$
 the construction would yield

 ![Graph]
NP’s hardest problems

• Definition 7.34:
 A language B is **NP-complete** if
 1. $B \in \text{NP}$
 2. $A \leq_p B$, for all $A \in \text{NP}$

P=NP?

• Theorem 7.35: If B is NP-complete and $B \in P$, then $P = NP$.
Cook–Levin Theorem

- \textit{SAT} is NP-complete.
 (If $A \in \text{NP}$, then $A \leq_p \text{SAT}$.)

But that’s not the only one!

- \textit{CLIQUE} is NP-complete (why?)