P and NP

Sipser 7.2-7.3 (pages 256–270)

Polynomial time

\[P = \bigcup_i \text{TIME}(n^i) \]

\[\text{TIME}(n) \subset \text{TIME}(n^2) \subset \text{TIME}(n^3) \subset \ldots \]
“Practical” problems

• If \(n = 100 \)
 – \(n^3 = 1 \text{ billion} \)
 – \(2^n > \# \text{atoms in the universe} \)

• Polynomial time is generally considered “practical” for a computer

• \(P \) is the class of “solvable” or “tractable” problems

How many tapes?

• Definition 7.12:
 \(P \) is the class of languages that are decidable in polynomial time by a deterministic single-tape Turing machine.

• But remember… we can convert from single-tape to multi-tape!
 – What was the time complexity conversion?
Polynomially equivalent models

\[
\begin{align*}
M & \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad \| \\
\quad & \quad a \quad a \quad a \quad \| \\
\quad & \quad b \quad a \quad \| \\
S & \quad # \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad # \quad a \quad a \quad # \quad b \quad a \quad # \quad \|
\end{align*}
\]

Finding your way

- \(\text{PATH} = \{<G,s,t>| \exists \text{ directed } s \text{ to } t \text{ path in } G\} \)
PATH ∈ P

• M = "On input <G,s,t>:
 1. Place a mark on node s.
 2. Repeat until no additional nodes are marked:
 3. Scan all edges of G.
 If (a,b) found from marked node to unmarked node, mark b.
 4. If t is marked, accept. Otherwise, reject.

Hamiltonian paths

• HAMPATH = {<G,s,t> | \exists Hamiltonian path from s to t}
Hamiltonian paths

- \(HAMPATH = \{ <G,s,t> \mid \exists \text{ Hamiltonian path from } s \text{ to } t \} \)

Checking for Hamiltonian paths

- Brute force method
- \(E = \text{"On input } <G,s,t>:\)
 1. Generate all orderings, \(p_1, p_2, ..., p_n \), of the nodes of \(G \)
 2. Check whether \(s = p_1 \) and \(t = p_n \)
 3. For each \(i=1 \) to \(n-1 \), check whether \((p_i, p_{i+1}) \)
 is an edge of \(G \).
 If any are not, reject. Otherwise, accept."
Guessing a solution

- \textbf{N = "On input} \langle G, s, t \rangle:$
 1. Guess an orderings, \(p_1, p_2, \ldots, p_n \), of the nodes of \(G \)
 2. Check whether \(s = p_1 \) and \(t = p_n \)
 3. For each \(i = 1 \) to \(n-1 \), check whether \((p_i, p_{i+1}) \)
 is an edge of \(G \).
 \textit{If any are not, reject. Otherwise, accept."}

Nondeterministic time complexity

- Definition 7.9: Let \(N \) be a NTM. The \textbf{running time} of \(N \) is a function \(f: N \rightarrow N \), where \(f(n) \) is the maximum number of steps that \(N \) uses on any branch of its computation on any input of length \(n \)

\[f(n) \]
Nondeterministic time complexity classes

- Definition 7.21:
 \[\text{NTIME}(t(n)) = \{ L \mid L \text{ is decided in } O(t(n)) \text{ time by an NTM} \} \]

Verifiers

- Definition 7.18:
 - A **verifier** for a language \(A \) is an algorithm \(V \), where \(A = \{ w \mid V \text{ accepts } <w,c> \text{ for some string } c \} \)
 - A polynomial time **verifier** runs in polynomial time in the length of \(w \)
 - A language \(A \) is **polynomially verifiable** if it has a polynomial time verifier
The class NP

- Definition 7.19:
 NP is the class of languages that have polynomial time verifiers

Nondeterminism and verifiers

- Theorem 7.20:
 A language is in NP iff it is decided by some nondeterministic polynomial time Turing machine

- Corollary 7.19: $NP = \bigcup_k\text{NTIME}(n^k)$
The classes P and NP

\[P = \bigcup_i \text{TIME}(n^i) \]

\[NP = \bigcup_i \text{NTIME}(n^i) \]

The big question: \(P = NP ? \)

\[P \subseteq NP \subseteq \text{PSPACE} = \text{NPSPACE} \subseteq \text{EXPTIME} \]

proper containment