Mapping Reducibility

Sipser 5.3 (pages 206–210)

Computable functions

- Definition 5.17: A function \(f : \Sigma^* \rightarrow \Sigma^* \) is a **computable function** if some Turing machine \(M \), on every input \(w \), halts with just \(f(w) \) on its tape.

- Example: The increment function

\[
inc++ : \{1\}^* \rightarrow \{1\}^*
\]

is Turing-computable
Incrementing

• $\text{inc}++: \{1\}^* \rightarrow \{1\}^*$

$$\text{Finite control}$$

$$\text{Infinite tape}$$

Transforming machines

$F =$ "On input $<M>$:

1. Construct the machine
 $M_\infty =$ "On input x:
 1. Run M on x.
 2. If M accepts, accept.
 3. If M rejects, loop."

2. Output $<M_\infty>$."
Mapping reducibility

• Definition 5.20:
 Language A is mapping reducible to language B, written $A \leq_m B$, if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$, where for every w,$$
 w \in A \iff f(w) \in B
$$

Problem reduction

• Theorem 5.22:
 If $A \leq_m B$ and B is decidable, then A is decidable.
And... the contrapositive

- Theorem 5.22:
 If $A \leq_m B$ and B is decidable,
 then A is decidable.

- Corollary 5.23:
 If $A \leq_m B$ and A is undecidable,
 then B is undecidable.

A familiar mapping reduction...

$A_{TM} = \{<M, w> | M \text{ is a TM and } M \text{ accepts } w\}$

$HALT_{TM} = \{<M, w> | M \text{ is a TM & } M \text{ halts on input } w\}$
\[A_{TM} \leq_m HALT_{TM} \]

\(F = \) "On input \(<M>:\)"
1. Construct the machine
 \(M_w = \) "On input \(x:\)"
 1. Run \(M\) on \(x\).
 2. If \(M\) accepts, accept.
 3. If \(M\) rejects, loop."
2. Output \(<M_w>\)."

Similarly...

• Theorem 5.28:
 If \(A \leq_m B\) and \(B\) is Turing-recognizable, then \(A\) is Turing-recognizable.

• Theorem 5.29:
 If \(A \leq_m B\) and \(A\) is not Turing-recognizable, then \(B\) is not Turing-recognizable.
Solvable, half-solvable, hopeless

\[A_{TM} \subseteq A_{TM,\emptyset} \subseteq E_{TM} \]

- Turing-recognizable
- Turing-decidable
- co-Turing-recognizable

\[EQ_{TM} = \{ <M_1, M_2> | L(M_1) = L(M_2) \} \]

is hopeless

- Theorem 5.30:
 \(EQ_{TM} \) is neither Turing-recognizable nor co-Turing-recognizable
- Proof:
 - What if we show \(A_{TM} \leq_m EQ_{TM} \)?
$A_{TM} \leq_m EQ_{TM}$

- $G = "On \text{ input } <M,w>:"
 1. Construction the following two machines:
 $M_1 = "On \text{ any input:}"
 1. Accept"
 $M_2 = "On \text{ any input:}"
 1. Run M on w.
 2. If it accepts, accept:"
 2. Output $<M_1,M_2>:"

EQ_{TM} is not Turing-recognizable

- Theorem 5.30:
 EQ_{TM} is neither Turing-recognizable nor co-Turing-recognizable
- Proof:
 Show $A_{TM} \leq_m \overline{EQ_{TM}}$
\[A_{TM} \leq_m \overline{EQ_{TM}} \]

- \(G = "\text{On input } <M, w>:" \)
 1. Construction the following two machines:
 - \(M_1 = "\text{On any input:} \)
 1. Reject."
 - \(M_2 = "\text{On any input:} \)
 1. Run \(M \) on \(w \).
 2. If it accepts, accept."
 2. Output \(<M_1, M_2>." \)

Solvable, half-solvable, hopeless

- Turing-recognizable
- Turing-decidable
- co-Turing-recognizable