Reducibility

Sipser 5.1 (pages 187-198)
Driving directions

If you can’t drive to London…
If something’s impossible...

- Theorem 4.11:
 \(A_{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ accepts } w \} \) is undecidable.

- Define:
 \(HALT_{TM} = \{ <M, w> \mid M \text{ is a TM and } M \text{ halts on input } w \} \)

- Is \(HALT_{TM} \) decidable?

The Halting Problem (again!)

- Theorem 5.1: \(HALT_{TM} \) is undecidable.

- Proof Idea:
 - We know \(A_{TM} \) is undecidable.
 - We need to reduce one of \(HALT_{TM} \) or \(A_{TM} \) to the other.
 - Which way to go?
HALT\textsubscript{TM} is undecidable.

- Proof:
 Suppose \(R \) decides \(\text{HALT}_{TM} \). Define
 \(S = \) "On input \(<M,w> \), where \(M \) is a TM and \(w \) a string:
 1. Run TM \(R \) on input \(<M,w> \).
 2. If \(R \) rejects, then reject.
 3. If \(R \) accepts, simulate \(M \) on input \(w \) until it halts.
 4. If \(M \) enters its accept state, accept;
 if \(M \) enters its reject state, reject."

What about emptiness?

- \(E_{TM} = \{ <M> \mid M \text{ is a TM and } L(M) = \emptyset \} \)
- Theorem 5.2: \(E_{TM} \) is undecidable.
A step along the way

• Given an input \(<M,w>\), define a machine \(M_w\) as follows.
• \(M_w = \text{"On input } x\text{:}
 1. If } x \neq w, \text{ reject.}
 2. If } x = w, \text{ run } M \text{ on input } w \text{ and accept if } M \text{ does."}"

\[E_{TM} = \{<M> \mid M \text{ is a TM and } L(M) = \emptyset \} \]

• Proof:
 Suppose TM \(R\) decides \(E_{TM}\). Define a TM to decide \(A_{TM}\)
 \(S = \text{"On input } <M,w>:\)
 1. Use the description of \(M\) and \(w\) to construct \(M_w\).
 2. Run \(R\) on input \(<M_w>\).
 3. If \(R\) accepts, reject; if \(R\) rejects, accept."
With power comes uncertainty

<table>
<thead>
<tr>
<th></th>
<th>M accepts w</th>
<th>$L(M) = \emptyset$</th>
<th>$L(M_1) = L(M_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turing machines</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>PDA</td>
<td>✔</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Finite automata</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Is there anything that can be done?

• Rice’s Theorem: Testing any nontrivial property of the languages recognized by Turing machines is undecidable!
We can’t even tell when something’s regular!

• $\text{REGULAR}_{TM} =$
 \{ $<M>$ | M is a TM and $L(M)$ is regular $\}$

• Theorem 5.3: REGULAR_{TM} is undecidable.

REGULAR_{TM} is undecidable

• Proof:
 Assume R is a TM that decides REGULAR_{TM}.
 Define S = "On input $<M,w>$:
 1. Construct TM
 M_2 = "On input x:
 1. If x has the form 0^m1^n, accept.
 2. Otherwise, run M on input w and accept if M
 accepts w.
 2. Run R on input $<M_2>$.
 3. If R accepts, accept; if R rejects, reject."