Decidable languages

Sipser 4.1 (pages 165–173)

Hierarchy of languages
Describing Turing machine input

• Input is a string over the alphabet Σ
• What if we want to encode an “object”?
 – DFA, NFA, PDA, CFG, etc...
 – Use brackets shorthand to indicate that input is encoding of object
 • For example:
 • $<M>$ is the encoding of M, where M is a DFA
 • Then, in the machine, simply refer to M as a DFA

Problems concerning regular languages

• $A_{DFA} = \{<B, w>| \ B \text{ is a DFA that accepts input string } w\}$
• $A_{NFA} = \{<B, w>| \ B \text{ is a NFA that accepts input string } w\}$
• $A_{REX} = \{<R, w>| \ R \text{ is a regular expression that generates string } w\}$

• Are these languages decidable?
Deciding regular languages

• Theorem 4.1: A_{DFA} is decidable.
• Proof.
 Let $M = "\text{On input } <B,w>, \text{ where } B \text{ is a DFA:}"
 1. Simulate B on input w.
 2. If the simulation ends in an accept state, accept. Otherwise, reject.

What about guessing?

• Theorem 4.2: A_{NFA} is decidable.
• Proof:
 Let $N = "\text{On input } <B,w>, \text{ where } B \text{ is an NFA:}"
 1. Convert NFA B to an equivalent DFA C
 using the procedure given in Theorem 1.39
 2. Simulate TM M of Theorem 4.1 on input $<C,w>$
 3. If M accepts, accept. Otherwise, reject."
Deciding regular expressions

• Theorem 4.3: A_{REX} is decidable.
• Proof:
 Let $P =$ "On input $<R,w>$, where R is a regular expression:
 1. Convert regular expression R to an equivalent NFA A using the procedure given in Theorem 1.54
 2. Simulate TM N of Theorem 4.1 on input $<A,w>$
 3. If N accepts, accept. Otherwise, reject."

Can we test for emptiness?

• $E_{DFA} = \{<A> \mid A$ is a DFA and $L(A) = \emptyset\}$
• Theorem 4.4: E_{DFA} is a decidable language.
• Proof:
 Let $T =$ "On input $<A>$, where A is a DFA:
 1. Mark the start state of A.
 2. Repeat until no new states get marked:
 • Mark any state that has a transition coming into it from any state that is already marked.
 3. If no accept state is marked, accept; otherwise, reject."
Can we tell if two DFAs are equivalent?

- \(EQ_{\text{DFA}} = \{ <A, B> \mid A \text{ and } B \text{ are DFAs and } L(A) = L(B) \} \)
- Theorem 4.5: \(EQ_{\text{DFA}} \) is a decidable language.
- Proof:
 Let \(F = \) “On input \(<A, B> \), where \(A \) and \(B \) are DFAs:
 1. Construct DFA \(C \) to recognize \(A \ XOR B \).
 2. Run TM \(T \) from Theorem 4.4 on input \(<C> \).
 3. If \(T \) accepts, accept. Otherwise, reject.”

What about context-free languages?

- \(A_{\text{CFG}} = \{ <G,w> \mid G \text{ is a CFG that generates } w \} \)
- Theorem 4.7: \(A_{\text{CFG}} \) is decidable.
- Proof:
 Let \(S = \) “On input \(<G,w> \), where \(G \) is a CFG:
 1. Convert \(G \) to an equivalent grammar in Chomsky normal form
 2. List all derivations with \(2n-1 \) steps, where \(n \) is the length of \(w \)
 3. If any of these derivations generate \(w \), accept. Otherwise, reject.”
Emptiness... again

- $E_{CFG} = \{<G> \mid G \text{ is a CFG and } L(G) = \emptyset\}$
- Theorem 4.8: E_{CFG} is decidable.
- Proof:
 Let $R = \text{"On input } <G>, \text{ where } G \text{ is a CFG:}\$
 1. Mark all terminal symbols in G.
 2. Repeat until no new variables get marked:
 - Mark any variable A where G has a rule $A \rightarrow U_1 U_2 \ldots U_k$ and each symbol U_1, U_2, \ldots, U_k has already been marked
 3. If the start variable is not marked, accept; otherwise, reject.

Can we tell if two CFGs are equivalent?

- $EQ_{CFG} = \{<G, H> \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H)\}$
- Is EQ_{DFA} a decidable language?
- Is something wrong with this proof:
 Let $W = \text{"On input } <G,H>, \text{ where } G \text{ and } H \text{ are CFGs:}\$
 1. Construct CFG F to recognize $L(G) \ XOR \ L(H)$.
 2. Run TM R from Theorem 4.8 on input $<F>$.
 3. If R accepts, accept. Otherwise, reject."
But, the good news is...

- Theorem 4.9: Every context-free language is decidable.
- Proof:
 Let G be a CFG for A. We design a TM M_G that decides A as follows.

 $M_G = \text{"On input } w:\n 1. \text{ Run TM } S \text{ from Theorem 4.7 on input } <G,w>.$
 2. \text{ If this machine accepts, } accept. \text{ Otherwise, } reject."