

Algorithms

Sipser 3.3 (pages 154–159)

Computability

• Hilbert's Tenth Problem:
 Find “a process according to which it can be determined by a finite number of operations” whether a given a polynomial
 \[p(x_1, x_2, \ldots, x_n) \]
 has an integral root.
Algorithms

• Intuitively:
 – An algorithm is a finite sequence of operations, each chosen from a finite set of well-defined operations, that halts in a finite time.
 – Sometimes also called procedures or recipes
Languages and Problems

• Let
 \[D = \{ p \mid p \text{ is a polynomial with an integral root} \} \]

• Hilbert's Tenth Problem:
 Determine whether \(D \) is Turing-decidable

\[D = \{ p \mid p \text{ is a polynomial with an integral root} \} \]

• Turing-recognizable
• \(M = \)
 "On input \(p \), where \(p \) is a polynomial \(p(x_1,x_2,\ldots,x_n) \).
 1. Lexicographically generate integer values for \((x_1,x_2,\ldots,x_n)\).
 2. Evaluate \(p \) as each set of values is generated.
 3. If, at any point, the polynomial evaluates to 0, accept."
Hierarchy of languages

All languages ⊃ Turing-recognizable ⊃ Turing-decidable ⊃ Context-free languages ⊃ Regular languages

Describing Turing machines

\[
\begin{align*}
q_1 & \rightarrow \square, R \\
q_2 & \rightarrow x, R \\
q_3 & \rightarrow 0, R \\
q_4 & \rightarrow x, R \\
q_5 & \rightarrow 0, L \\
\end{align*}
\]
Describing Turing machines

• **Formal:**

• **Implementation:**
 - \(M = " \text{On input string } w. \)
 1. Sweep across tape, crossing off every other 0.
 2. If tape contained one 0, accept.
 3. Else, if number of 0’s is odd, reject.
 4. Return head to left-hand end of tape.
 5. Go to step 1.*

• **High-level:**

 repeat until n=1

 exit if n mod 2 != 0

 set n = n / 2