More Turing Machines

Sipser 3.2 (pages 148-154)

Multitape Turing Machines

• Formally, we need only change the transition function to

\[\delta: Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L,R\}^k \]
Seems more powerful, but...

- Theorem 3.13: Every multitape Turing machine has an equivalent single-tape Turing machine.

Turing-recognizable languages

- Corollary 3.15: A language is Turing-recognizable if and only if some multitape Turing machine recognizes it.
Recognizing Composite Numbers

• Let \(L = \{I^n \mid n \text{ is a composite number}\} \)
• Designing a Turing machine to accept \(L \) would seem to involve factoring \(n \)
• However, if we could guess ...

Guessing

• Design a machine \(M \) that on input \(I^n \) performs the following steps:
 1. Nondeterministically choose two numbers \(p, q > 1 \) and transform the input into \(#I^n#I^p#I^q# \)
 2. Multiply \(p \) by \(q \) to obtain \(#I^n#I^{pq}# \)
 3. Checks the number of \(I \)'s before and after the middle \(# \) for equality
 • Accepts if equal, and rejects otherwise
Nondeterministic Turing machines

• Simply modify the transition function to satisfy:
 \[\delta : Q \times \Gamma \rightarrow P(Q \times \Gamma \times \{L,R\}) \]

Guessing doesn’t buy us anything!

• Theorem 3.16: Every nondeterministic Turing machine has an equivalent deterministic Turing machine.
Equivalence with Turing machines

- Theorem 3.21: A language is Turing-recognizable if and only if some enumerator enumerates it.
- Proof
 \((\Leftarrow)\) Suppose enumerator \(E\) enumerates \(L\).
 Define \(M = \text{"On input \(w\):}\)
 1. Run \(E\). Every time that \(E\) outputs a string, compare it with \(w\).
 2. If \(w\) ever appears in the output of \(E\), accept."
Equivalence with Turing machines

- Theorem 3.21: A language is Turing-recognizable if and only if some enumerator enumerates it.
- Proof
 \(\Rightarrow \) Suppose TM \(M \) recognizes \(L \). Build a lexicographic enumerator to generate the list of all possible strings \(s_1, s_2, \ldots \) over \(\Sigma^* \). Define \(E = \) "Ignore input."
 1. Repeat the following for \(i = 1, 2, 3, \ldots \)
 2. Run \(M \) for \(i \) steps on each input \(s_1, s_2, \ldots, s_i \).
 3. If any computations accept, print out corresponding \(s_i \).

TMs take their own sweet time...

- Recognizers, like enumerators may take a while to answer yes, ... and even longer to answer no
- A TM that halts on all inputs is called a decider
- A decider that recognizes a language is said to decide that language
- Call a language Turing-decidable if some Turing machine decides it
Recognizers and Deciders

• Theorem: A language is Turing-decidable if and only if both it and its complement are Turing-recognizable
• Proof:
 (\Rightarrow) By definition.

(\Leftarrow) Simulate, in parallel, M_1 on tape 1 and M_2 on tape 2.